ModularSensors > ModularSensors > Examples Using ModularSensors > Publishing Data > Sending Data to Monitor My Watershed/EnviroDIY > logging_to_MMW.ino

logging_to_MMW.ino example

Example logging data and publishing to Monitor My Watershed. See the walkthrough page for detailed instructions.

Example logging data and publishing to Monitor My Watershed. See the walkthrough page for detailed instructions.

/** =========================================================================
 * @file logging_to_MMW.ino
 * @brief Example logging data and publishing to Monitor My Watershed.
 *
 * @author Sara Geleskie Damiano <sdamiano@stroudcenter.org>
 * @copyright (c) 2017-2022 Stroud Water Research Center (SWRC)
 *                          and the EnviroDIY Development Team
 *            This example is published under the BSD-3 license.
 *
 * Build Environment: Visual Studios Code with PlatformIO
 * Hardware Platform: EnviroDIY Mayfly Arduino Datalogger
 *
 * DISCLAIMER:
 * THIS CODE IS PROVIDED "AS IS" - NO WARRANTY IS GIVEN.
 * ======================================================================= */

// ==========================================================================
//  Defines for TinyGSM
// ==========================================================================
/** Start [defines] */
#ifndef TINY_GSM_RX_BUFFER
#define TINY_GSM_RX_BUFFER 64
#endif
#ifndef TINY_GSM_YIELD_MS
#define TINY_GSM_YIELD_MS 2
#endif
/** End [defines] */

// ==========================================================================
//  Include the libraries required for any data logger
// ==========================================================================
/** Start [includes] */
// The Arduino library is needed for every Arduino program.
#include <Arduino.h>

// EnableInterrupt is used by ModularSensors for external and pin change
// interrupts and must be explicitly included in the main program.
#include <EnableInterrupt.h>

// Include the main header for ModularSensors
#include <ModularSensors.h>
/** End [includes] */


// ==========================================================================
//  Data Logging Options
// ==========================================================================
/** Start [logging_options] */
// The name of this program file
const char* sketchName = "logging_to MMW.ino";
// Logger ID, also becomes the prefix for the name of the data file on SD card
const char* LoggerID = "XXXXX";
// How frequently (in minutes) to log data
const uint8_t loggingInterval = 15;
// Your logger's timezone.
const int8_t timeZone = -5;  // Eastern Standard Time
// NOTE:  Daylight savings time will not be applied!  Please use standard time!

// Set the input and output pins for the logger
// NOTE:  Use -1 for pins that do not apply
const int32_t serialBaud = 115200;  // Baud rate for debugging
const int8_t  greenLED   = 8;       // Pin for the green LED
const int8_t  redLED     = 9;       // Pin for the red LED
const int8_t  buttonPin  = 21;      // Pin for debugging mode (ie, button pin)
const int8_t  wakePin    = 31;  // MCU interrupt/alarm pin to wake from sleep
// Mayfly 0.x D31 = A7
// Set the wake pin to -1 if you do not want the main processor to sleep.
// In a SAMD system where you are using the built-in rtc, set wakePin to 1
const int8_t sdCardPwrPin   = -1;  // MCU SD card power pin
const int8_t sdCardSSPin    = 12;  // SD card chip select/slave select pin
const int8_t sensorPowerPin = 22;  // MCU pin controlling main sensor power
/** End [logging_options] */


// ==========================================================================
//  Wifi/Cellular Modem Options
// ==========================================================================
/** Start [digi_xbee_cellular_transparent] */
// For any Digi Cellular XBee's
// NOTE:  The u-blox based Digi XBee's (3G global and LTE-M global) can be used
// in either bypass or transparent mode, each with pros and cons
// The Telit based Digi XBees (LTE Cat1) can only use this mode.
#include <modems/DigiXBeeCellularTransparent.h>

// Create a reference to the serial port for the modem
HardwareSerial& modemSerial = Serial1;  // Use hardware serial if possible
const int32_t   modemBaud   = 9600;     // All XBee's use 9600 by default

// Modem Pins - Describe the physical pin connection of your modem to your board
// NOTE:  Use -1 for pins that do not apply
const int8_t modemVccPin    = -2;     // MCU pin controlling modem power
const int8_t modemStatusPin = 19;     // MCU pin used to read modem status
const bool useCTSforStatus  = false;  // Flag to use the XBee CTS pin for status
const int8_t modemResetPin  = 20;     // MCU pin connected to modem reset pin
const int8_t modemSleepRqPin = 23;    // MCU pin for modem sleep/wake request
const int8_t modemLEDPin = redLED;    // MCU pin connected an LED to show modem
                                      // status (-1 if unconnected)

// Network connection information
const char* apn = "xxxxx";  // The APN for the gprs connection

// NOTE:  If possible, use the `STATUS/SLEEP_not` (XBee pin 13) for status, but
// the `CTS` pin can also be used if necessary
DigiXBeeCellularTransparent modemXBCT(&modemSerial, modemVccPin, modemStatusPin,
                                      useCTSforStatus, modemResetPin,
                                      modemSleepRqPin, apn);
// Create an extra reference to the modem by a generic name
DigiXBeeCellularTransparent modem = modemXBCT;
/** End [digi_xbee_cellular_transparent] */


// ==========================================================================
//  Using the Processor as a Sensor
// ==========================================================================
/** Start [processor_sensor] */
#include <sensors/ProcessorStats.h>

// Create the main processor chip "sensor" - for general metadata
const char*    mcuBoardVersion = "v1.1";
ProcessorStats mcuBoard(mcuBoardVersion);
/** End [processor_sensor] */


// ==========================================================================
//  Maxim DS3231 RTC (Real Time Clock)
// ==========================================================================
/** Start [ds3231] */
#include <sensors/MaximDS3231.h>

// Create a DS3231 sensor object
MaximDS3231 ds3231(1);
/** End [ds3231] */


// ==========================================================================
//  Bosch BME280 Environmental Sensor
// ==========================================================================
/** Start [bme280] */
#include <sensors/BoschBME280.h>

const int8_t I2CPower    = sensorPowerPin;  // Power pin (-1 if unconnected)
uint8_t      BMEi2c_addr = 0x76;
// The BME280 can be addressed either as 0x77 (Adafruit default) or 0x76 (Grove
// default) Either can be physically mofidied for the other address

// Create a Bosch BME280 sensor object
BoschBME280 bme280(I2CPower, BMEi2c_addr);
/** End [bme280] */


// ==========================================================================
//  Maxim DS18 One Wire Temperature Sensor
// ==========================================================================
/** Start [ds18] */
#include <sensors/MaximDS18.h>

// OneWire Address [array of 8 hex characters]
// If only using a single sensor on the OneWire bus, you may omit the address
// DeviceAddress OneWireAddress1 = {0x28, 0xFF, 0xBD, 0xBA, 0x81, 0x16, 0x03,
// 0x0C};
const int8_t OneWirePower = sensorPowerPin;  // Power pin (-1 if unconnected)
const int8_t OneWireBus   = 6;  // OneWire Bus Pin (-1 if unconnected)

// Create a Maxim DS18 sensor objects (use this form for a known address)
// MaximDS18 ds18(OneWireAddress1, OneWirePower, OneWireBus);

// Create a Maxim DS18 sensor object (use this form for a single sensor on bus
// with an unknown address)
MaximDS18 ds18(OneWirePower, OneWireBus);
/** End [ds18] */


// ==========================================================================
//  Creating the Variable Array[s] and Filling with Variable Objects
// ==========================================================================
/** Start [variable_arrays] */
Variable* variableList[] = {
    new ProcessorStats_SampleNumber(&mcuBoard,
                                    "12345678-abcd-1234-ef00-1234567890ab"),
    new BoschBME280_Temp(&bme280, "12345678-abcd-1234-ef00-1234567890ab"),
    new BoschBME280_Humidity(&bme280, "12345678-abcd-1234-ef00-1234567890ab"),
    new BoschBME280_Pressure(&bme280, "12345678-abcd-1234-ef00-1234567890ab"),
    new BoschBME280_Altitude(&bme280, "12345678-abcd-1234-ef00-1234567890ab"),
    new MaximDS18_Temp(&ds18, "12345678-abcd-1234-ef00-1234567890ab"),
    new ProcessorStats_Battery(&mcuBoard,
                               "12345678-abcd-1234-ef00-1234567890ab"),
    new MaximDS3231_Temp(&ds3231, "12345678-abcd-1234-ef00-1234567890ab"),
    new Modem_RSSI(&modem, "12345678-abcd-1234-ef00-1234567890ab"),
    new Modem_SignalPercent(&modem, "12345678-abcd-1234-ef00-1234567890ab"),
};


// Count up the number of pointers in the array
int variableCount = sizeof(variableList) / sizeof(variableList[0]);

// Create the VariableArray object
VariableArray varArray(variableCount, variableList);
/** End [variable_arrays] */


// ==========================================================================
//  The Logger Object[s]
// ==========================================================================
/** Start [loggers] */
// Create a new logger instance
Logger dataLogger(LoggerID, loggingInterval, &varArray);
/** End [loggers] */


// ==========================================================================
//  Creating Data Publisher[s]
// ==========================================================================
/** Start [publishers] */
// A Publisher to Monitor My Watershed / EnviroDIY Data Sharing Portal
// Device registration and sampling feature information can be obtained after
// registration at https://monitormywatershed.org or https://data.envirodiy.org
const char* registrationToken =
    "12345678-abcd-1234-ef00-1234567890ab";  // Device registration token
const char* samplingFeature =
    "12345678-abcd-1234-ef00-1234567890ab";  // Sampling feature UUID

// Create a data publisher for the Monitor My Watershed/EnviroDIY POST endpoint
#include <publishers/EnviroDIYPublisher.h>
EnviroDIYPublisher EnviroDIYPOST(dataLogger, &modem.gsmClient,
                                 registrationToken, samplingFeature);
/** End [publishers] */


// ==========================================================================
//  Working Functions
// ==========================================================================
/** Start [working_functions] */
// Flashes the LED's on the primary board
void greenredflash(uint8_t numFlash = 4, uint8_t rate = 75) {
    for (uint8_t i = 0; i < numFlash; i++) {
        digitalWrite(greenLED, HIGH);
        digitalWrite(redLED, LOW);
        delay(rate);
        digitalWrite(greenLED, LOW);
        digitalWrite(redLED, HIGH);
        delay(rate);
    }
    digitalWrite(redLED, LOW);
}

// Reads the battery voltage
// NOTE: This will actually return the battery level from the previous update!
float getBatteryVoltage() {
    if (mcuBoard.sensorValues[0] == -9999) mcuBoard.update();
    return mcuBoard.sensorValues[0];
}
/** End [working_functions] */


// ==========================================================================
//  Arduino Setup Function
// ==========================================================================
/** Start [setup] */
void setup() {
// Wait for USB connection to be established by PC
// NOTE:  Only use this when debugging - if not connected to a PC, this
// could prevent the script from starting
#if defined SERIAL_PORT_USBVIRTUAL
    while (!SERIAL_PORT_USBVIRTUAL && (millis() < 10000)) {
        // wait
    }
#endif

    // Start the primary serial connection
    Serial.begin(serialBaud);

    // Print a start-up note to the first serial port
    Serial.print(F("Now running "));
    Serial.print(sketchName);
    Serial.print(F(" on Logger "));
    Serial.println(LoggerID);
    Serial.println();

    Serial.print(F("Using ModularSensors Library version "));
    Serial.println(MODULAR_SENSORS_VERSION);
    Serial.print(F("TinyGSM Library version "));
    Serial.println(TINYGSM_VERSION);
    Serial.println();

// Allow interrupts for software serial
#if defined SoftwareSerial_ExtInts_h
    enableInterrupt(softSerialRx, SoftwareSerial_ExtInts::handle_interrupt,
                    CHANGE);
#endif
#if defined NeoSWSerial_h
    enableInterrupt(neoSSerial1Rx, neoSSerial1ISR, CHANGE);
#endif

    // Start the serial connection with the modem
    modemSerial.begin(modemBaud);

    // Set up pins for the LED's
    pinMode(greenLED, OUTPUT);
    digitalWrite(greenLED, LOW);
    pinMode(redLED, OUTPUT);
    digitalWrite(redLED, LOW);
    // Blink the LEDs to show the board is on and starting up
    greenredflash();

    // Set the timezones for the logger/data and the RTC
    // Logging in the given time zone
    Logger::setLoggerTimeZone(timeZone);
    // It is STRONGLY RECOMMENDED that you set the RTC to be in UTC (UTC+0)
    Logger::setRTCTimeZone(0);

    // Attach the modem and information pins to the logger
    dataLogger.attachModem(modem);
    modem.setModemLED(modemLEDPin);
    dataLogger.setLoggerPins(wakePin, sdCardSSPin, sdCardPwrPin, buttonPin,
                             greenLED);

    // Begin the logger
    dataLogger.begin();

    // Note:  Please change these battery voltages to match your battery
    // Set up the sensors, except at lowest battery level
    if (getBatteryVoltage() > 3.4) {
        Serial.println(F("Setting up sensors..."));
        varArray.setupSensors();
    }

    // Sync the clock if it isn't valid or we have battery to spare
    if (getBatteryVoltage() > 3.55 || !dataLogger.isRTCSane()) {
        // Synchronize the RTC with NIST
        // This will also set up the modem
        dataLogger.syncRTC();
    }

    // Create the log file, adding the default header to it
    // Do this last so we have the best chance of getting the time correct and
    // all sensor names correct
    // Writing to the SD card can be power intensive, so if we're skipping
    // the sensor setup we'll skip this too.
    if (getBatteryVoltage() > 3.4) {
        Serial.println(F("Setting up file on SD card"));
        dataLogger.turnOnSDcard(
            true);  // true = wait for card to settle after power up
        dataLogger.createLogFile(true);  // true = write a new header
        dataLogger.turnOffSDcard(
            true);  // true = wait for internal housekeeping after write
    }

    // Call the processor sleep
    Serial.println(F("Putting processor to sleep\n"));
    dataLogger.systemSleep();
}
/** End [setup] */


// ==========================================================================
//  Arduino Loop Function
// ==========================================================================
/** Start [loop] */
// Use this short loop for simple data logging and sending
void loop() {
    // Note:  Please change these battery voltages to match your battery
    // At very low battery, just go back to sleep
    if (getBatteryVoltage() < 3.4) {
        dataLogger.systemSleep();
    }
    // At moderate voltage, log data but don't send it over the modem
    else if (getBatteryVoltage() < 3.55) {
        dataLogger.logData();
    }
    // If the battery is good, send the data to the world
    else {
        dataLogger.logDataAndPublish();
    }
}
/** End [loop] */