ModularSensors > Pages > ModularSensors > Examples Using ModularSensors > DRWI Citizen Science > DRWI Sites with EnviroDIY LTE Bees

DRWI Sites with EnviroDIY LTE Bees

Example sketch for using the EnviroDIY SIM7080G LTE cellular module with an EnviroDIY Mayfly Data Logger.

The exact hardware configuration used in this example:

  • Mayfly v1.0 board
  • EnviroDIY SIM7080 LTE module (with Hologram SIM card)
  • Hydros21 CTD sensor
  • Campbell Scientific OBS3+ Turbidity sensor

An EnviroDIY LTE SIM7080 module can be used with the older Mayfly v0.5b boards if you change line 101 (for modemVccPin) from 18 to -1. This is because the Mayfly v1.0 board has a separate 3.3v regulator to power the Bee socket and is controlled by turning pin 18 on or off. Mayfly v0.5b has the Bee socket constantly powered, therefore using "-1" is the proper setting for that line of code.

The EnviroDIY LTE SIM7080 module includes 2 antennas in the package. The small thin one is the cellular antenna, and should be connected to the socket labeled "CELL". The thicker block is the GPS antenna, and should be connected to the "GPS" socket, but only if you intend to use the GPS functionality of the module. ModularSensors does not currently suport GPS functionality, but other libraries such as TinyGPS can work with the SIM7080 module.

The included cell antenna works best in high-signal-strength areas. For most remote areas and logger deployments, we suggest a larger LTE antenna, like the W3907B0100 from PulseLarsen (Digikey 1837-1003-ND or Mouser 673-W3907B0100)



Unique Features of the DRWI EnviroDIY LTE Example

  • Specifically for sites within the Delaware River Watershed Initiative.
  • Uses a EnviroDIY LTE Bee based on the SIMCom SIM7080G

PlatformIO Configuration

; PlatformIO Project Configuration File
;
;   Build options: build flags, source filter
;   Upload options: custom upload port, speed and extra flags
;   Library options: dependencies, extra library storages
;   Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; http://docs.platformio.org/page/projectconf.html

[platformio]
description = ModularSensors example intended for DRWI users with CTD, turbidity, and a EnviroDIY SIM7080G LTE modem

[env:mayfly]
monitor_speed = 57600
board = mayfly
platform = atmelavr
framework = arduino
lib_ldf_mode = deep+
lib_ignore =
    RTCZero
    Adafruit NeoPixel
    Adafruit GFX Library
    Adafruit SSD1306
    Adafruit ADXL343
    Adafruit STMPE610
    Adafruit TouchScreen
    Adafruit ILI9341
build_flags =
    -DSDI12_EXTERNAL_PCINT
lib_deps =
    envirodiy/EnviroDIY_ModularSensors
;  ^^ Use this when working from an official release of the library
;    https://github.com/EnviroDIY/ModularSensors.git#develop
;  ^^ Use this when if you want to pull from the develop branch

The Complete Code

/** =========================================================================
 * @file DRWI_SIM7080LTE.ino
 * @brief Example for DRWI CitSci LTE sites.
 *
 * This example shows proper settings for the following configuration:
 *
 * Mayfly v1.0 board
 * EnviroDIY SIM7080 LTE module (with Hologram SIM card)
 * Hydros21 CTD sensor
 * Campbell Scientific OBS3+ Turbidity sensor
 *
 * @author Sara Geleskie Damiano <sdamiano@stroudcenter.org>
 * @copyright (c) 2017-2022 Stroud Water Research Center (SWRC)
 *                          and the EnviroDIY Development Team
 *            This example is published under the BSD-3 license.
 *

 * Hardware Platform: EnviroDIY Mayfly Arduino Datalogger
 *
 * DISCLAIMER:
 * THIS CODE IS PROVIDED "AS IS" - NO WARRANTY IS GIVEN.
 * ======================================================================= */

// ==========================================================================
//  Defines for TinyGSM
// ==========================================================================
/** Start [defines] */
#ifndef TINY_GSM_RX_BUFFER
#define TINY_GSM_RX_BUFFER 64
#endif
#ifndef TINY_GSM_YIELD_MS
#define TINY_GSM_YIELD_MS 2
#endif
/** End [defines] */

// ==========================================================================
//  Include the libraries required for any data logger
// ==========================================================================
/** Start [includes] */
// The Arduino library is needed for every Arduino program.
#include <Arduino.h>

// EnableInterrupt is used by ModularSensors for external and pin change
// interrupts and must be explicitly included in the main program.
#include <EnableInterrupt.h>

// Include the main header for ModularSensors
#include <ModularSensors.h>
/** End [includes] */


// ==========================================================================
//  Data Logging Options
// ==========================================================================
/** Start [logging_options] */
// The name of this program file
const char* sketchName = "DRWI_SIM7080LTE.ino";
// Logger ID, also becomes the prefix for the name of the data file on SD card
const char* LoggerID = "XXXXX";
// How frequently (in minutes) to log data
const uint8_t loggingInterval = 15;
// Your logger's timezone.
const int8_t timeZone = -5;  // Eastern Standard Time
// NOTE:  Daylight savings time will not be applied!  Please use standard time!

// Set the input and output pins for the logger
// NOTE:  Use -1 for pins that do not apply
const int32_t serialBaud = 57600;  // Baud rate for debugging
const int8_t  greenLED   = 8;      // Pin for the green LED
const int8_t  redLED     = 9;      // Pin for the red LED
const int8_t  buttonPin  = 21;     // Pin for debugging mode (ie, button pin)
const int8_t  wakePin    = 31;     // MCU interrupt/alarm pin to wake from sleep
// Mayfly 0.x D31 = A7
const int8_t sdCardPwrPin   = -1;  // MCU SD card power pin
const int8_t sdCardSSPin    = 12;  // SD card chip select/slave select pin
const int8_t sensorPowerPin = 22;  // MCU pin controlling main sensor power
/** End [logging_options] */


// ==========================================================================
//  Wifi/Cellular Modem Options
// ==========================================================================
/** Start [sim_com_sim7080] */
// For almost anything based on the SIMCom SIM7080G
#include <modems/SIMComSIM7080.h>

// Create a reference to the serial port for the modem
HardwareSerial& modemSerial = Serial1;  // Use hardware serial if possible
const int32_t   modemBaud = 9600;  //  SIM7080 does auto-bauding by default, but
                                   //  for simplicity we set to 9600

// Modem Pins - Describe the physical pin connection of your modem to your board
// NOTE:  Use -1 for pins that do not apply

const int8_t modemVccPin = 18;
// MCU pin controlling modem power --- Pin 18 is the power enable pin for the
// bee socket on Mayfly v1.0, use -1 if using Mayfly 0.5b or if the bee socket
// is constantly powered (ie you changed SJ18 on Mayfly 1.x to 3.3v)
const int8_t modemStatusPin  = 19;  // MCU pin used to read modem status
const int8_t modemSleepRqPin = 23;  // MCU pin for modem sleep/wake request
const int8_t modemLEDPin = redLED;  // MCU pin connected an LED to show modem
                                    // status

// Network connection information
const char* apn =
    "hologram";  // APN connection name, typically Hologram unless you have a
                 // different provider's SIM card. Change as needed

// Create the modem object
SIMComSIM7080 modem7080(&modemSerial, modemVccPin, modemStatusPin,
                        modemSleepRqPin, apn);
// Create an extra reference to the modem by a generic name
SIMComSIM7080 modem = modem7080;
/** End [sim_com_sim7080] */


// ==========================================================================
//  Using the Processor as a Sensor
// ==========================================================================
/** Start [processor_sensor] */
#include <sensors/ProcessorStats.h>

// Create the main processor chip "sensor" - for general metadata
const char*    mcuBoardVersion = "v1.1";
ProcessorStats mcuBoard(mcuBoardVersion);
/** End [processor_sensor] */


// ==========================================================================
//  Maxim DS3231 RTC (Real Time Clock)
// ==========================================================================
/** Start [ds3231] */
#include <sensors/MaximDS3231.h>

// Create a DS3231 sensor object
MaximDS3231 ds3231(1);
/** End [ds3231] */


// ==========================================================================
//  Meter Hydros 21 Conductivity, Temperature, and Depth Sensor
// ==========================================================================
/** Start [hydros21] */
#include <sensors/MeterHydros21.h>

const char*   hydrosSDI12address = "1";  // The SDI-12 Address of the Hydros 21
const uint8_t hydrosNumberReadings = 6;  // The number of readings to average
const int8_t  SDI12Power = sensorPowerPin;  // Power pin (-1 if unconnected)
const int8_t  SDI12Data  = 7;               // The SDI12 data pin

// Create a Meter Hydros 21 sensor object
MeterHydros21 hydros(*hydrosSDI12address, SDI12Power, SDI12Data,
                     hydrosNumberReadings);
/** End [hydros21] */


// ==========================================================================
//  Campbell OBS 3 / OBS 3+ Analog Turbidity Sensor
// ==========================================================================
/** Start [obs3] */
#include <sensors/CampbellOBS3.h>

const int8_t  OBS3Power = sensorPowerPin;  // Power pin (-1 if unconnected)
const uint8_t OBS3NumberReadings = 10;
const uint8_t ADSi2c_addr        = 0x48;  // The I2C address of the ADS1115 ADC
// Campbell OBS 3+ *Low* Range Calibration in Volts
const int8_t OBSLowADSChannel = 0;  // ADS channel for *low* range output
const float  OBSLow_A         = 0.000E+00;  // "A" value (X^2) [*low* range]
const float  OBSLow_B         = 1.000E+00;  // "B" value (X) [*low* range]
const float  OBSLow_C         = 0.000E+00;  // "C" value [*low* range]

// Create a Campbell OBS3+ *low* range sensor object
CampbellOBS3 osb3low(OBS3Power, OBSLowADSChannel, OBSLow_A, OBSLow_B, OBSLow_C,
                     ADSi2c_addr, OBS3NumberReadings);


// Campbell OBS 3+ *High* Range Calibration in Volts
const int8_t OBSHighADSChannel = 1;  // ADS channel for *high* range output
const float  OBSHigh_A         = 0.000E+00;  // "A" value (X^2) [*high* range]
const float  OBSHigh_B         = 1.000E+00;  // "B" value (X) [*high* range]
const float  OBSHigh_C         = 0.000E+00;  // "C" value [*high* range]

// Create a Campbell OBS3+ *high* range sensor object
CampbellOBS3 osb3high(OBS3Power, OBSHighADSChannel, OBSHigh_A, OBSHigh_B,
                      OBSHigh_C, ADSi2c_addr, OBS3NumberReadings);
/** End [obs3] */


// ==========================================================================
//  Creating the Variable Array[s] and Filling with Variable Objects
// ==========================================================================
/** Start [variable_arrays] */
Variable* variableList[] = {
    new MeterHydros21_Cond(&hydros),
    new MeterHydros21_Depth(&hydros),
    new MeterHydros21_Temp(&hydros),
    new CampbellOBS3_Turbidity(&osb3low, "", "TurbLow"),
    new CampbellOBS3_Turbidity(&osb3high, "", "TurbHigh"),
    new ProcessorStats_Battery(&mcuBoard),
    new MaximDS3231_Temp(&ds3231),
    new Modem_SignalPercent(&modem),
};

// All UUID's, device registration, and sampling feature information can be
// pasted directly from Monitor My Watershed.
// To get the list, click the "View  token UUID list" button on the upper right
// of the site page.

// *** CAUTION --- CAUTION --- CAUTION --- CAUTION --- CAUTION ***
// Check the order of your variables in the variable list!!!
// Be VERY certain that they match the order of your UUID's!
// Rearrange the variables in the variable list ABOVE if necessary to match!
// Do not change the order of the variables in the section below.
// *** CAUTION --- CAUTION --- CAUTION --- CAUTION --- CAUTION ***

// Replace all of the text in the following section with the UUID array from
// MonitorMyWatershed

/* clang-format off */
// ---------------------   Beginning of Token UUID List   ---------------------


const char* UUIDs[] =  // UUID array for device sensors
    {
        "12345678-abcd-1234-ef00-1234567890ab",  // Specific conductance (Meter_Hydros21_Cond)
        "12345678-abcd-1234-ef00-1234567890ab",  // Water depth (Meter_Hydros21_Depth)
        "12345678-abcd-1234-ef00-1234567890ab",  // Temperature (Meter_Hydros21_Temp)
        "12345678-abcd-1234-ef00-1234567890ab",  // Turbidity (Campbell_OBS3_Turb) (Low)
        "12345678-abcd-1234-ef00-1234567890ab",  // Turbidity (Campbell_OBS3_Turb) (High)
        "12345678-abcd-1234-ef00-1234567890ab",  // Battery voltage (EnviroDIY_Mayfly_Batt)
        "12345678-abcd-1234-ef00-1234567890ab",  // Battery voltage (EnviroDIY_Mayfly_Batt)
        "12345678-abcd-1234-ef00-1234567890ab",  // Percent full scale (EnviroDIY_LTEB_SignalPercent)
};
const char* registrationToken = "12345678-abcd-1234-ef00-1234567890ab";  // Device registration token
const char* samplingFeature = "12345678-abcd-1234-ef00-1234567890ab";  // Sampling feature UUID


// -----------------------   End of Token UUID List  -----------------------
/* clang-format on */

// Count up the number of pointers in the array
int variableCount = sizeof(variableList) / sizeof(variableList[0]);

// Create the VariableArray object
VariableArray varArray(variableCount, variableList, UUIDs);
/** End [variable_arrays] */


// ==========================================================================
//  The Logger Object[s]
// ==========================================================================
/** Start [loggers] */
// Create a new logger instance
Logger dataLogger(LoggerID, loggingInterval, &varArray);
/** End [loggers] */


// ==========================================================================
//  Creating Data Publisher[s]
// ==========================================================================
/** Start [publishers] */
// Create a data publisher for the Monitor My Watershed/EnviroDIY POST endpoint
#include <publishers/EnviroDIYPublisher.h>
EnviroDIYPublisher EnviroDIYPOST(dataLogger, &modem.gsmClient,
                                 registrationToken, samplingFeature);
/** End [publishers] */


// ==========================================================================
//  Working Functions
// ==========================================================================
/** Start [working_functions] */
// Flashes the LED's on the primary board
void greenredflash(uint8_t numFlash = 4, uint8_t rate = 75) {
    for (uint8_t i = 0; i < numFlash; i++) {
        digitalWrite(greenLED, HIGH);
        digitalWrite(redLED, LOW);
        delay(rate);
        digitalWrite(greenLED, LOW);
        digitalWrite(redLED, HIGH);
        delay(rate);
    }
    digitalWrite(redLED, LOW);
}

// Reads the battery voltage
// NOTE: This will actually return the battery level from the previous update!
float getBatteryVoltage() {
    if (mcuBoard.sensorValues[0] == -9999) mcuBoard.update();
    return mcuBoard.sensorValues[0];
}


// ==========================================================================
// Arduino Setup Function
// ==========================================================================
/** Start [setup] */
void setup() {
    // Start the primary serial connection
    Serial.begin(serialBaud);

    // Print a start-up note to the first serial port
    Serial.print(F("Now running "));
    Serial.print(sketchName);
    Serial.print(F(" on Logger "));
    Serial.println(LoggerID);
    Serial.println();

    Serial.print(F("Using ModularSensors Library version "));
    Serial.println(MODULAR_SENSORS_VERSION);
    Serial.print(F("TinyGSM Library version "));
    Serial.println(TINYGSM_VERSION);
    Serial.println();

    // Start the serial connection with the modem
    modemSerial.begin(modemBaud);

    // Set up pins for the LED's
    pinMode(greenLED, OUTPUT);
    digitalWrite(greenLED, LOW);
    pinMode(redLED, OUTPUT);
    digitalWrite(redLED, LOW);
    // Blink the LEDs to show the board is on and starting up
    greenredflash();

    pinMode(20, OUTPUT);  // for proper operation of the onboard flash memory
                          // chip's ChipSelect (Mayfly v1.0 and later)

    // Set the timezones for the logger/data and the RTC
    // Logging in the given time zone
    Logger::setLoggerTimeZone(timeZone);
    // It is STRONGLY RECOMMENDED that you set the RTC to be in UTC (UTC+0)
    Logger::setRTCTimeZone(0);

    // Attach the modem and information pins to the logger
    dataLogger.attachModem(modem);
    modem.setModemLED(modemLEDPin);
    dataLogger.setLoggerPins(wakePin, sdCardSSPin, sdCardPwrPin, buttonPin,
                             greenLED);

    // Begin the logger
    dataLogger.begin();

    // Note:  Please change these battery voltages to match your battery
    // Set up the sensors, except at lowest battery level
    if (getBatteryVoltage() > 3.4) {
        Serial.println(F("Setting up sensors..."));
        varArray.setupSensors();
    }

    /** Start [setup_sim7080] */
    modem.setModemWakeLevel(HIGH);   // ModuleFun Bee inverts the signal
    modem.setModemResetLevel(HIGH);  // ModuleFun Bee inverts the signal
    Serial.println(F("Waking modem and setting Cellular Carrier Options..."));
    modem.modemWake();  // NOTE:  This will also set up the modem
    modem.gsmModem.setBaud(modemBaud);   // Make sure we're *NOT* auto-bauding!
    modem.gsmModem.setNetworkMode(38);   // set to LTE only
                                         // 2 Automatic
                                         // 13 GSM only
                                         // 38 LTE only
                                         // 51 GSM and LTE only
    modem.gsmModem.setPreferredMode(1);  // set to CAT-M
                                         // 1 CAT-M
                                         // 2 NB-IoT
                                         // 3 CAT-M and NB-IoT
    /** End [setup_sim7080] */


    // Sync the clock if it isn't valid or we have battery to spare
    if (getBatteryVoltage() > 3.55 || !dataLogger.isRTCSane()) {
        // Synchronize the RTC with NIST
        // This will also set up the modem
        dataLogger.syncRTC();
    }

    // Create the log file, adding the default header to it
    // Do this last so we have the best chance of getting the time correct and
    // all sensor names correct
    // Writing to the SD card can be power intensive, so if we're skipping
    // the sensor setup we'll skip this too.
    if (getBatteryVoltage() > 3.4) {
        Serial.println(F("Setting up file on SD card"));
        dataLogger.turnOnSDcard(
            true);  // true = wait for card to settle after power up
        dataLogger.createLogFile(true);  // true = write a new header
        dataLogger.turnOffSDcard(
            true);  // true = wait for internal housekeeping after write
    }

    // Call the processor sleep
    Serial.println(F("Putting processor to sleep\n"));
    dataLogger.systemSleep();
}
/** End [setup] */


// ==========================================================================
//  Arduino Loop Function
// ==========================================================================
/** Start [loop] */
// Use this short loop for simple data logging and sending
void loop() {
    // Note:  Please change these battery voltages to match your battery
    // At very low battery, just go back to sleep
    if (getBatteryVoltage() < 3.4) {
        dataLogger.systemSleep();
    }
    // At moderate voltage, log data but don't send it over the modem
    else if (getBatteryVoltage() < 3.55) {
        dataLogger.logData();
    }
    // If the battery is good, send the data to the world
    else {
        dataLogger.logDataAndPublish();
    }
}
/** End [loop] */